Понятия со словосочетанием «большой квадрат»

Большой квадрат — астеризм; лучшее время для наблюдения — осень. Включает три звезды созвездия Пегас и одну — созвездия Андромеда, расположенных по углам воображаемого квадрата: Шеат (β Пегаса), Маркаб (α Пегаса), Альгениб (γ Пегаса) и Альферац (α Андромеды). Астеризм лежит приблизительно на 20° севернее небесного экватора.

Связанные понятия

Квадра́т — правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны. Квадрат является одновременно частным случаем ромба и прямоугольника.
В геометрии шестиугольная антипризма — это 4-я в бесконечном множестве антипризм, образованная чётным числом треугольных сторон между двумя шестиугольными сторонами.
Наращённый усечённый куб — один из многогранников Джонсона (J66, по Залгаллеру — М11+М5).
Наращённая шестиуго́льная при́зма — один из многогранников Джонсона (J54, по Залгаллеру — П6+М2).
Наращённый усечённый тетра́эдр — один из многогранников Джонсона (J65, по Залгаллеру — М10+М4).
Антипараллелограмм, или контрпараллелограмм, — плоский четырёхугольник, в котором каждые две противоположные стороны равны между собою, но не параллельны, в отличие от параллелограмма. Длинные противоположные стороны пересекаются между собою в точке, находящейся между их концами; пересекаются между собою и продолжения коротких сторон.
Удлинённая четырёхуго́льная пирами́да — один из многогранников Джонсона (J8, по Залгаллеру — М2+П4).
Удлинённая пятиуго́льная пирами́да — один из многогранников Джонсона (J9, по Залгаллеру — М3+П5).
Два́жды ко́со наращённая шестиуго́льная при́зма — один из многогранников Джонсона (J56, по Залгаллеру — П6+2М2).
Удлинённая треуго́льная пирами́да — один из многогранников Джонсона (J7, по Залгаллеру — М1+П3).
В геометрии ротонда — любой член семейства диэдрально-симметричных многогранников. Они похожи на куполы, но вместо перемежающихся квадратов и треугольников перемежаются пятиугольники и треугольники (по отношению к оси). Пятискатная ротонда является телом Джонсона (J6).
Уплощённая треуго́льная клинорото́нда — один из многогранников Джонсона (J92, по Залгаллеру — М20).
Три́жды наращённая шестиуго́льная при́зма — один из многогранников Джонсона (J57, по Залгаллеру — П6+3М2).
Удлинённая четырёхуго́льная бипирами́да — один из многогранников Джонсона (J15, по Залгаллеру — М2+П4+М2).
Серединный многоугольник (многоугольник Казнера) — многоугольник, вершинами которого являются середины рёбер исходного многоугольника.
В геометрии усечённая квадратная мозаика — это полуправильные мозаики из правильных многоугольников на евклидовой плоскости с одним квадратом и двумя восьмиугольниками в каждой вершине. Это единственная мозаика из правильных выпуклых многоугольников, содержащая соприкасающиеся сторонами восьмиугольники. Символ Шлефли мозаики равен t{4,4}.
Наращённый усечённый додека́эдр — один из многогранников Джонсона (J68, по Залгаллеру — М6+М12).
Наращённая пятиуго́льная при́зма — один из многогранников Джонсона (J52, по Залгаллеру — П5+М2).
Дельто́ид (от др.-греч. δελτοειδής — «дельтовидный», напоминающий заглавную букву дельта) — четырёхугольник, в котором есть две пары смежных равных сторон.
Два́жды противополо́жно наращённая шестиуго́льная при́зма — один из многогранников Джонсона (J55, по Залгаллеру — М2+П6+М2).
Скру́ченно удлинённая четырёхуго́льная пирами́да — один из многогранников Джонсона (J10, по Залгаллеру — М2+А4).
Наращённая треуго́льная при́зма — один из многогранников Джонсона (J49, по Залгаллеру — П3+М2).
Дом Бинга — нетривиальный пример стягиваемого двумерного комплекса вложенного в 3-мерное пространство.
Усечённый икосаэдр — многогранник, состоящий из 12 правильных пятиугольников и 20 правильных шестиугольников. Имеет икосаэдрический тип симметрии. В каждой из вершин сходятся 2 шестиугольника и пятиугольник. Каждый из пятиугольников со всех сторон окружён шестиугольниками. Усечённый икосаэдр — один из самых распространённых полуправильных многогранников, так как именно эту форму имеет классический футбольный мяч (если представить его пятиугольники и шестиугольники, обычно окрашенные соответственно...
Два́жды наращённый усечённый куб — один из многогранников Джонсона (J67, по Залгаллеру — М5+М11+М5).
Противополо́жно скру́ченный отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J77, по Залгаллеру — М14+М6).
Растянутый многоугольник серединных точек вписанного многоугольника P — это другой вписанный в ту же самую окружность многоугольник, вершины которого являются серединами дуг между вершинами многоугольника P. Многоугольник может быть получен из серединного многоугольника (многоугольника, вершины которого лежат в серединах сторон), если провести радиусы из центра окружности через вершины серединного многоугольника.
Ко́со скру́ченный отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J78, по Залгаллеру — М13+М6+М6).
Купол можно рассматривать как призму, где один из многоугольников наполовину стянут путём объединения вершин попарно.
В геометрии японская теорема утверждает, что центры окружностей, вписанных в определённые треугольники внутри вписанного в окружность четырёхугольника, являются вершинами прямоугольника.
Окружность называют вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Два́жды ко́со наращённый усечённый додека́эдр — один из многогранников Джонсона (J70, по Залгаллеру — М12+2М6).
Два́жды противополо́жно наращённый усечённый додека́эдр — один из многогранников Джонсона (J69, по Залгаллеру — М6+М12+М6).
Скру́ченный два́жды отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J82, по Залгаллеру — М14+М6).
Полукруг — сегмент круга, хордой которого является диаметр этого круга, либо дуга окружности, лежащая между концами диаметра.Площадь полукруга составляет одну вторую (1/2) от площади круга с таким же диаметром.
Усечённая пирами́да — многогранник, образованный частью пирамиды отсечённой плоскостью параллельной её основанию.
Два́жды ко́со скру́ченный отсечённый ромбоикосододека́эдр — один из многогранников Джонсона (J79, по Залгаллеру — М13+2М6).
Десятиуго́льник (правильный десятиугольник — декагон) — многоугольник с десятью углами и десятью сторонами.
В геометрии трёхскатный купол представляет собой один из многогранников Джонсона (J3 = (по Залгаллеру) М4). Купол можно рассматривать как половину кубооктаэдра.
Два́жды наращённая пятиуго́льная при́зма — один из многогранников Джонсона (J53, по Залгаллеру — П5+2М2).
Наращённый додека́эдр — один из многогранников Джонсона (J58, по Залгаллеру — М15+М3).
Плосконосая квадратная мозаика — это полуправильное замощение плоскости. В каждой вершине сходятся три треугольника и два квадрата. Символ Шлефли мозаики — s{4,4}.
Арбелос (греч. άρβυλος — сапожный нож) — плоская геометрическая фигура, образованная большим полукругом, из которого вырезаны два меньших, диаметры которых лежат на диаметре большого и разбивают его на две части. Точнее, пусть A, B и C — точки на одной прямой, тогда три полуокружности с диаметрами AB, BC и AC, расположенные по одну сторону от этой прямой, ограничивают арбелос.
Удлинённая пятиуго́льная бипирами́да — один из многогранников Джонсона (J16, по Залгаллеру — М3+П5+М3).
В евклидовой геометрии равнодиагональный четырёхугольник — это выпуклый четырёхугольник, две диагонали которого имеют равные длины. Равнодиагональные четырёхугольники имели важное значение в древней индийской математике, где в классификации в первую очередь выделялись равнодиагональные четырёхугольники, и только потом четырёхугольники подразделялись на другие типы .
Правильный (или равносторонний) треугольник — это правильный многоугольник с тремя сторонами, простейший из правильных многоугольников. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.
Три́жды наращённый усечённый додека́эдр — один из многогранников Джонсона (J71, по Залгаллеру — М12+3М6).
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я